
A0-ALIG 98O FLORIDA IP4IV sAiIESviLLE o(PT OF INOU*TmIAL AND BYI-E9TC P/O On/
A COMIN90 APPROACH4 To THE PALLkY LOADI41 PROSICtN. U)
MAY SI T J1 MONSON0 No0o1vwb-c-omf

LHCCLASSIPIED 0-1-11

A COMBINED APPROACH TO THE

PALLET LOADING PROBLEM

Research Report No. 81-11

by

Thom J. Hodgson

August, 1981
revised

May, 1982

Department of Industrial and Systems Engineering
University of Florida

Gainesville, Florida 32611

Department of Applied Economic Sciences
Katholieke Universiteit Leuven

Leuven (Louvain), Belgium

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research was supported in part by the U.S. Air Force, under contract
number F73AFL-00360001, by the Office of Naval Research, under contract

number N00014-76-C-0096, and by the Onderzoeksfonds K.U. Leuven under
Grant OT/IX/7.

THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE AIR FORCE OR NAVY POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

DTIC
ELECTE
JUL 1 5 19 '

STEII

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) _

REPORT DOCUMENTATION PAGE READ CMSTRUCIOSI BEFORE- COMPLETING FORM
1. REPORT NUMBERF

.R0NUMBE 1 2. JVTACCfSSION No. 1ACPNT'S CATALOG MUER

81-11

4. TITLE (amid Sub ttlo) S. TYPE OF REPORT & PERIOD COVERED

A COMBINED APPROACH TO THE Technical

PALLET LOADING PROBLEM
s. PERFORMING ORG. REPORT NUMBER

81-11
7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(@)

F73AFL-00360001 (Air Force)

Thorn J. Hodgson N00014-76-C-0096 (Navy)

OT/IX/7 (Onderzoeksfonds)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Industrial and Systems Engineering
AREA A WORK UNIT NUMBERS

University of Florida
Gainesville, Florida 32611

II. CONTROLLING OFFICE NAME A?4O ADDRESS 12. REPORT DATE
Office of Naval Research - A. F. Logistics 8/81-Revised May, 1982

Arlington, VA Mgmt. Center 13. NUMBEROFPAGES
Gunter AFS, Alabama 27

14. MONITORING AGENCY NAME & ADDRESS(II different froa Controllind Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

ISO. DECL ASSI FI CATION/DOWNGRADING
SCHEDULE

N/A
I6. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC I U , DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If dillferent from Report)

II. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse side if necesary and identify by block number)

Pallet Loading
Stock Cutting

Dynamic Progra ing

Packing

20. ABSTRACT (Continue okrovree side It necessary and Identity by block number)

In this papertihe two-dimensional pallet loading problem is considered: that

is, the problem of loading a rectangular pallet of size "L" by "W", drawing from
a set of "n" rectangular boxes. The objective is to maximize the area covered on
the pallet by the boxes loaded. The problem is approached using a combination of
Dynamic programming and heuristics. The structured solutions resulting from the
application of the "dynamic program" have two serendipitous characteristics: any
item may be placed on the periphery of the pallet for easy access, and some con-
trol may be retained over the centei of gravity of the pallet. Computational
results are given.

OI 1473 EOITION NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wh.en Dae need)

TABLE OF CONTENTS

PAGE

ABSTRACT 1

INTRODUCTION 2

BACKGROUND 3

PALLET LOADING PROCEDURE 5

AN INTERACTIVE APPROACH 15

EXPERIMENTAL COMPUTATIONS18

ACKNOWLEDGEMENTS22

REFERENCES 23

Aocession For ,

NTIS GRAI
DTIC TAB
Unannounced El
Justificatio

By
Distribution/
Availability Codes

Avail and/or

Dist Special

4

V

A COMBINED APPROACH TO THE PALLET LOADING PROBLEM

ABSTRACT

In this paper the two-dimensional pallet loading problem is consi-

dered that is, the problem of loading a rectangular pallet of size "L"

by "N", drawing from a set of "n" rectangular boxes. The objective is to

maximize the area covered on the pallet by the boxes loaded. The problem

is approached using a combination of Dynamic programming and heuristics.

The structured solutions resulting from the application of the "dynamic

program" have two serendipitous characteristics : any item may be placed

on the periphery of the pallet for easy access, and some control may be

retained over the center of gravity of the pallet. Computational results

are given.

i W I

4

*1

2

INTRODUCTION

Much of the packaged material which is shipped in trucks, railcars,

aircraft, and ships is packed on a pallet or in some other bulk container.

The packing problem can be stated simply as trying to pack as many pack-

ages as possible into a container. Certainly the general packing problem

would include irregularly shaped packages and containers. However, in this

paper, only rectangularly shaped packages (boxes) and containers (pallets)

are dealt with. There are, at least, two major problems that can be iden-

tified as "The Pallet Packing Problem". The first problem could be called

"The Manufacturer's Pallet Packing Problem". In this problem, the manu-

facturer produces a product which is packaged in identical boxes; the boxes

may be packed in identical cartons; the cartons are packed on identical pal-

lets; and the pallets are loaded in standard sized trucks, railcars, or

shipping containers. The problem is to choose the package, carton, pallet,

(and possibly the container) dimensions so that the volume of product

packed in a container is maximized. This problem requires a one-time

analysis to find the solution. With the exception of Steudel [18 1, little

has appeared on this problem in the open literature. However, it is clear

that industry is attacking this problem and several consulting firms offer

services in this area.

The second problem could be called "The Distributor's Pallet Packing

Problem". In this problem, the distributor fills-an order from a customer.

The order is packaged in boxes of varying dimensions. The problem is to

pack the boxes on a standard pallet so as to maximize the volume placed on

each pallet (i.e., minimize the number of pallets used to ship the order).

The problem requires a new analysis for each pallet packed. As a conse-

quence, from an economic stand point, the cost of a solution for the Distri-

butor's Problem can be, at most, a fraction of the cost of a solution for

the Manufacture's Problem. In addition, in most applications, the Distribu-

tor's Problem must be solved quickly (i.e., real-time computation) in order

3

for the solution to be applied.

For the Manufacturer's Problem, present technology supports the

packing of pallets using automated material handling systems. However,

the Distributor's Problem, by its nonrepetitive nature and solution time

requirements, is more difficult. In order to automate the physical pack-

ing of distributor's pallet, one first needs a packing algorithm which

essentially is real-time.

The problem addressed in this paper is a constrained version of

the Distributor's Problem. Some of the boxes to be packed on the pallet

may contain volitile liquids or explosives. As a consequence, those items

must be packed on the periphery of the pallet so that, if necessary, they

can be removed quickly. This problem is faced by the U.S. Air Force when

they transport palletized cargo consisting of military equipment and

supplies. In this case, since the pallets are loaded by hand it is neces-

sary only to give a plan for loading, which might be modified slightly

during the actual packing.

BACKGROUND

The pallet loading-problem is related to problems long studied in

the Operations Research literature : The Cutting Stock and Bin Packing

Problems. A review of the literature is beyond the scope of this paper-

however, the interested reader is directed to reviews by Golden [10 1,

Hinxman 114 1, and Garey and Johnson [8 1. Between these papers, over
125 articles, books, and papers are reviewed. Of particular interest is

the work typified by Coffman, et al. [4 1 and Baker, et al f2 1. The

approach is to develop efficient, relatively simple, approximation algo-

rithms, study their limitations and derive worst-case bounds on the per-

formance of the packings they produced. Other approaches have concentrated

•'a

4'4

on more complex procedures for which performance bounds are more difficult

to provide. This paper falls in the latter category.

Of interest is the work of Gilmore and Gomory [9 1 in their de-

velopment of knapsack functions. Madsen [16 1 used a heuristic adapta-

tion of their approach. for a glass cutting problem. Adamowicz and

Albano [I I used a combination of heuristics and dynamic programming. In

their cutting stock problem they generated "strips" of like sized boxes

which were fit into'rectangular parts of the sheet using D.P. The parti-

tioning of the sheet was performed heuristiclly. Haims and Freeman [121

applied a dynamic programming approach for a template layout problem, assu-

ming that there is an unlimited supply of boxes of each type and boxes can

have only one orientation. The procedure described in this paper is, in

fact, a generalization and extension of their approach.

DeSha [6 1, in an unpublished master's thesis, developed a heu-

ristic for loading containers. His procedure first sets up stacks of

items to fit the container height, then loads the stacks in the container

to maximize the container floor area covered. The heuristic appears to

obtain quite good results using a data base with boxes whose dimensions

are randomly generated. Finally, it should be noted that de Cani [5 1

has shown that non-orthogonal packing may lead to "better" solutions. How-

ever, that observation makes more sense for the cutting stock problem than

a pallet loading problem.

The pallet loading problem falls in the category of problems called

NP-HARD [7 1. Consequently, a truly efficient optimal algorithm is not

likely to be forthcoming. In developing an approach to the problem that

would be consistent with the special needs of the USAF, it also became

clear that it would be highly desirable for the system to be interactive.

5

This would allow a user to guide the solution of a particular loading

problem in order to deal with those unquantifiable elements of a "real

world" loading problem. With these observations in mind, a system called

IPLS (Interactive Pallet Loading System) was developed. A partial des-

cription of that system is in [151 . In this paper, the algorithmic de-

velopment and conceptual use of such a system is discussed.

In the following, a pallet loading procedure is developed for the

two-dimensional loading problem. Then ways of using this procedure to

load real-life (three-dimensional) pallets is discussed. Computational ex-

perience is presented.

PALLET LOADING PROCEDURE

The pallet loading procedure can be described as a combination of

the principles of Dynamic Programming [171 and heuristics. To understand

the procedure, it will be useful first to consider a "best" procedure. It

will be obvious that the "best" procedure is computationally infeasible.

Therefore, structural limitations will be introduced which limit the com-

putational effort. A serendipitous by-product of the resulting procedure

structure is that positioning of hazardous material and considerations of

center of gravity can behandled without loss within the procedure.

Assume that it is desirable (no matter what the cost) to find so-

lutions to the two-dimensional pallet loading problem which maximize the

area covered on the pallet. In order to achieve this end, let us consider

Dynamic Programming as a solution methodology. The following definitions

will be useful.

P = A partition dividing the pallet into two parts (see figure 1). The

left-hand sub-pallet must include the origin (0,0), and the right-

hand sub-pallet must include the point (L,W).

6

(0,0)I

[Left-hand Subpallet]I

F-
Partition P

[Right-hand Subpallet]

L (L,W)

Figure 1: Plan View of Pallet with Sample Partition P

7

i = The index of boxes to be loaded, i=l,...,n.

(i) = The length of box i.

w(i) = The width of box i.

S =i) The profile (shadow) of box i. The profile is a rectangle with

length l(i) and width w(i).

N = Set of all boxes to be considered for loading (of size n).

I = Subset of the boxes, 1,2,..., n.

f(P,I) = The maximum area which can be covered of the left-hand sub-pallet

of P using the subset of boxes I.

The Dynamic Programming equation for the pallet loading problem can be

given as follows

(I) f(P,I) max [l(i)xw(i) + f(P-S(i),I-i)]
is I

It should be noted that the notation 'P-S(i)', represents a partition which,

in a graphical sense, is the partition P with a profile of box i removed

from the right-hand edge of the left-hand sub-pallet. Typically, there

could be many different realizations of 'P-S(i)' that should be considered

within a dynamic optimization. There are other obvious difficulties with

implementing equation (1). The most obvious is that the number of possible

partitions P of the pallet is extremely large. This means that the state

space for the Dynamic Program will require large amounts of computer storage.

It also means that the computer time required to solve the Dynamic Program

likely would be well beyond any sensible limit for real world applications.

One approach to developing a more tractable procedure is to limit

in some way the form of the possible partitions of the pallet. In the pre-

sent case, partitions of the pallet have been limited to rectangles (figure

2a). In order to specify the Dynamic Program resulting from the rectangu-

lar partitions, the following additional definitions are needed.

I?

8

(0,0)

(X,Y)

(L,W)

Figure 2a: Pallet with Rectangular Partition (x,y)

(0,0)

(xY)'

(L,W)

Figure 2b: Pallet with Two Jectangular Partitions (x,y) and (x',y')

9

x,y = Two-dimensional index specifying a rectangular partition (figure

2a).

J = Subset of the boxes, 1,2,...,n.

s(x,y,I) = The maximum area which can be covered of the left-hand sub-

pallet of x,y using the subset of boxes I.

h(x,y,x',y',I) = The maximum area which can be covered of the left-hand

sub-pallet of x',y' less the left-hand sub-pallet of x,y using

boxes from the set I (not all elements of I necessarily are used,

see figure 2b).

The Dynamic Programming equation for the pallet loading problem (limited

to rectangular partitions) can be given as follows

(2) s(x',y',I) = max [s(x,y,J) + h(x,y,x',y',I-J) I

y<=y '
JCI

The implementation of equation (2) also has its difficulties. The function

h(x,y,x',y',I-J) itself requires an optimization in order to pack the L-

shaped area common to the partition x',y', but not common to thd partition

x,y (i.e., I-J is the cross-hatched area in figure 2b). The state-space

is still too large to deal with on a practical basis.

In order to limit the size of the state space, it is necessary to

carry only one partial solution (s(x,y,I)) for each partition x,y. The

obvious choice is to carry

max [s(x,y,I)]I

With this limitation on the state space, the implementation of equation

(2) is relatively straightforward. It is necessary, however, to specify

several important details first

10

1. an optimization structure for h(x,y,x',y',I-J);

2. bounding rules for the elimination of partial solutions;

3. bounding rules for the minimization of computational effort.

The optimization for h(xy,x',y',I) is done simply by breaking the

L-shaped area into two rectangular areas (figure 3) and filling each area

using a linear Dynamic Programming procedure. The following definition is

useful.

b(j,x) = The maximum possible space covered in a rectangular area

of length x by stacking boxes from the set l,...,j (Note

the limitation of "linear" stacking imposed).

The Dynamic Programming equation for the rectangular loading problem can

be given as follows

(3) b(Qx) = max [b(j-1,x), b(j-1,x-l(j)) + l(j)xw(j) I

The implementation of equation (3) is achieved by first eliminating boxes

too large to fit in the rectangle, then turning each box in the candidate

set so that its longest dimension is perpendicular to the long dimension

of the rectangular area (if the longest dimension of the box is less than

or equal to the short dimension of the rectangular area, that is). This

insures an optimal packing of the rectangular area. The L-shaped area is

broken into two rectangular areas (corridors) two different ways (figure 3)

for the application of equation (3). The best solution obtained, in terms

of area covered, is retained.

A simple, and almost obvious, bounding rule that eliminates a great

deal of the storage requirements for the state space in computing equation

(2) is that a partial solution does not need to be retained for the parti-

tion x,y if there exists a partial solution for a partition x',y',

d

(0.0) I

(L.W)

Figure 3: Two Ways to Break Up L-Shaped Area

12

(x' < x, y' < y) such that the solution value for x', y'

(max [g(x', y', I) 1) is greater than or equal to the solution value for

x,y (max [g(xy,I) 1).

Another effective bounding scheme is used to eliminate computation

time. It involves computing an upper bound on the amount to be loaded in

a rectangular area of dimension LxW by using the result of a linear Dyna-

mic Program in multiplicative fashion. The following definition is useful.

c(,x) - The maximum possible linear space covered in a length x

by stacking boxes from the set],...J.

The Dynamic Programming equation for the linear loading problem can be given

as follows

(4) c(j,x) = max [c(j-l,x),c(j-l,x-l(j))+l(j),c(j-l,x-w(j))+w(j)]

The function c(n,x) specifies the maximum linear coverage that is possible

on the line segment [O,x I choosing from the set of boxes 1,...,n (posi-

tioning them by either length or width). For a pallet (rectangular sub-

pallet) of size L by W, an upper bound on the maximum load (coverage) pos-

sible is c(n,L)xc(n,W). The function c(n,x) can be computed prior to the

pallet loading and is easily implemented within the structure of equation

2. The upper bound can be used to eliminate the need to consider a given

partial solution (x',y') in equation (2) altogether. It can also be used

to eliminate the computation of Dynamic Program equation (3) within the

optimation of equation (2) when considering a specific partial solution

(x,y).

A more powerful bounding procedure can be used for rectangular sub-

pallets of certain dimensions. Clearly, if the width of the sub-pallet is

less than the minimum dimension (length and/or width) in the candidate box

&A

13

set, it is impossible to pack any of the candidate boxes on the sub-pallet.

Consequently, the upper bound on the amount which can be loaded is zero.

Now, let MINDIM equal the minimum dimension in the candidate box set. If

the width of the sub-pallet satisfies

MINDIM < = W < 2xMINDIM,

then boxes not fitting within the width of the sub-pallet can be eliminated

from the computation of equation (4), and the upper bound function is just

c(n,x,W) (where the "W" indicates the elimination of non-fitting box lengths

and/or widths from the candidate set, i.e., l(j) > W and/or w(j) > W).

The matrix layout of the bound is shown graphically in figure 4.

Another bound to suppliment the above bounds can be calculated. The

following definitions are useful.

a(i) = The area of box i (i.e., a(i) = l(i)xw(i))

d(j,z) = The maximum possible area covered on a pallet of area z

by loading boxes from the set 1,...,j, and ignoring con-

siderations of box shape.

The dynamic Programming equation for the area loading problem can be given

as follows

(5) d(j,z) = max [d(j-I,z), a(j)+d(j-],z-a(j))]

The function d(j,z) specifies the maximum area coverage that is possible

on a pallet of size z, choosing from the set of boxes 1,...,n, and assuming

- that the boxes can be "mashed" into any shape without loss of area. The

upper bound for a rectangular pallet (sub-pallet) of size L by W, is just

d(n,LxW). The upper bound used in the implimentation of equation (2), then,

is just the minimum of all the bounds described above.

II

14

(0,0) MINDIM 2*MINDIM

CBound = 0

MINDIM

(7 BundYn,x.Y)

* 2MINDIM -w

Bound =c(n,x)*c(n,Y)

.(XY)
Bound = c.(n~y,x)

L _

L'1 Figure 4: Matrix Layout of Bounds for pallet (sub-pallet)

Am

15

The solution procedure results in the boxes being placed in corri-

dors on the pallet. Two serendipitous by-products occur. First, since

each corridor has at least one end on the pallet perimeter, any box which

contains hazardous material can be placed at the end of the corridor (as

per USAF Regulations) within the structure of the solution. It is possi-

ble to set multiple "hazardous" boxes on a corridor, so there is no guaran-

tee that any box can be placed on the periphery of the pallet. However,

it has been our experience that the probability of not being able to do
so is virtually zero. Second, since boxes can be moved within their assigned
corridors, some control can be maintained over the center of gravity of the

pallet within the structure of the solution. Also, it should be noted that

any solution can be decomposed by a series of guillotine cuts.

AN INTERACTIVE APPROACH

Since real-life pallet loading problems typically have considerably

more complexity than the present formulation, the approach described above

is best used as part of a highly interactive computerized system. The in-

teractive pallet loading system (IPLS) is such a system [15]. The system

is, at this point, an experimental system used for develomental pur-

poses. While it is not intended to present the details of IPLS, some des-

cription of its functions'-is appropriate. IPLS is a fully interactive menu

driven system. It is intended to use as its data base the basic equipment

load of an Air Force squadron. For each box the following characteristics

are included : length, width, height, weight, organizational element in the

squadron, "stackability" code, "this end up" code, and hazardous material

code. IPLS provides the ability to identify those boxes belonging to the

squadron and associated with some subset of the squadron which must be

packed up for movement. The user also is provided with the ability to se-

lect subsets of boxes with desireable attributes (common height, limits

ii 4

16

on length and width, etc.) for packing. In addition there is an ability

to rotate boxes (for comnon height, etc.) in the data base.

The following illustrates two ways that the two-dimensional pallet

loading algorithm can be used to load three-dimensional pallets. One way

is to pack boxes a level at a time; each level made up of boxes of common

height. This way there is a box selection process for each level and the

loading algorithm is applied once for each level. This process can be

continued until the desired pallet height has been achieved. IPLS facili-

tates this approach to the load planning process in a straightforward way.

The result is a pallet with a "layered" load as shown in figure 5a.

A second approach is to load the pallet with columns (or stacks) of

boxes. That is, make up stacks of boxes such that the stacks are no higher

than the maximum allowable pallet height. Then the stacks can be used as

input to the loading algorithm, which is applied only once to load the pallet,

IPLS also facilitates this approach. It is possible to create the stacks

interactively through the use of a dynamic program which maximizes the

volume loaded over a user defined base box. The result is a pallet with a
"stacked" load as shown in figure 5b.

It should be noted that, since it may not be possible to load the

pallet to 100 % density, gaps will normally occur in a solution which could

result in unstable loads. However, that is not the case in the Air Force

application for the following reasons

1. The load plans are to be implimented manually, allowing "tightening" of

the load. (In addition, IPLS has a heuristic procedure for "tightening"
a load).

2. Voids which cannot be eliminated and would contribute to load instability

can be filled with packing material.

I

17

Figure 5a: "Layered" Pallet Load

Figure 5b: "Stacked" Pallet Load

18

3. Loaded pallets are covered with a nylon net which is then tighted.

This results in extremely stable loads.

Finally, it has been observed that USAF personnel often start

loading a pallet by selecting a large box and placing it in one corner of

the pallet (in fact, many times, it is, from a practical standpoint, neces-

sary to do so). Then the pallet load is built by stacking boxes around

the large box. IPLS is provided with the capability of performing the

same selection process interactively. The act of selecting the first box

of the load greatly reduces the combinatorics of the problem and reduces

computational effort dramatically.

EXPERIMENTAL COMPUTATIONS

The pallet loading procedure was programmed in fortran IV and im-

plimented on both a PDP-11/34 and the Katholieke Universiteit Leuven IBM

3033. Problems with a data set of 30 boxes were generated with box dimen-

sions uniformly distributed (integer values only) between the upper and

lower bounds as indicated in Tables 1, 2, and 3. Table I contains compu-

tation times for the IBM 3033 which are given in virtual seconds. Compu-

tation times (in CPU seconds) for the PDP 11/34 are approximately 20 times

those observed for the IBM 3033. Table 2 contains the number of undomi-

nated partial solutions generated by the dynamic program. Table 3 contains

the percent area of the pallet covered by the boxes loaded. Each entry of

Tables 1, 2, and 3 is the average of 5 problems. The maximum deviation of

individual computer runs from the average reported is smaller than one

might initially expect. For instance, the maximum percent deviation above

the mean reported computation time is 47 %. The deviations from the mean

for undominated partial solutions and (particularly) percent coverage are

considerably less.

IdI

19

Computation times can be seen to be dependent on both pallet size

and the range of box dimensions (Table 1). The times can be considered

to be upper bounds in that computational experience with data sets derived

from a USAF data base tends to be better than randomly generated problems.

For instance, a data set consisting of boxes of two sizes (17'x19' and

18'x19') was used to load a standard USAF pallet (104'x84') in approximate-

ly 1.52 seconds. A set of boxes randomly generated between 19' and 17' (6

possible box sizes) was used to load the same size pallet in approximately

4.46 seconds.

The number of undominated partial solutions generated by the Dynamic

Program also can be seen to be dependent on both pallet size and the range

of box dimensions (Table 2). This indicates the growth in the requirement

for computer storage. The storage requirement does not grow at the same

rate as computational requirement since it is bounded by the number of in-

tegral partitions of the pallet. However, on a computer of limited size

this can be a problem (i.e. a PDP 11/34).

The quality of the solutions to the randomly generated problems as

measured by the percent of the pallet area covered, is extremely good (Table

3). 4 out of the 5 pallet sizes used in the experimentation (60x40, 80x60,

80x80, and 1OOx8O) were chosen so that there would be a high likelyhood

of the existance of an extremely good solution. 74 out of the 85 problems

generated for these pallet sizes were solved with 100 percent coverage.

In the worst individual case, the coverage was 99.08 percent. One pallet

size used in the experimentation (70x50) was chosen so that there would not

be a high likelyhood of good solutions. With all boxes having dimensions

of 20x20, the best possible coverage would be only 68.6 percent. As the

randomness of the box dimensions increases, thequality of solutions in-

creases. With box dimensions randomly distributed betweenlO and 30, the

coverage was 99.70 percent. The worst individual case of the 5 was 99.14

percent. While it is impossible to compare fairly the quality of the solu-

tions obtained here with those of other procedures (for instance (1, 12, 16]),

it would appear there is little room for improvement.

20

Table I Computation times in virtual seconds

Box AREA
Size PALLET DIMENSIONS

Upper 2400 3500 4800 6400 8000
bods 60 x 40 70 x 50 80 x 60 80 x 80 100 x 80
/lover

22 .039 .155 .674 1.60 6.07

.23 081 .350 1.60 3.48 13.537

16 140 .864 2.73 6.33 25.44
24 _____ _____

,> 5 193 1.437 5.13 9.07

10 3.112 20.136

x not solved in 30 virtual seconds.

Table 2 : Undominated partial solutions generated

Box AREA
Size PALLET DIMENSIONS

SUpper 2400 3500 4800 6400 8000

lower 60 x 40 70 x 50 80 x 60 80 x 80 100 x 80

22 57.0 65.2 207.4 263.4 554.8

23 97.0 126.2 384.6 484.0 1059

24 135.4 238.8 591.4 769.4 1551.5
151.

25 174.8 379.6 766.6 988.6

10

g 30 423.0 842.2 it it I

xt not solved in 30 virtual seconds

21

Table 3 Percent coverage of the pallet area.

Box AREA
Size PALLET DIMENSIONS

Upper
bo ds 2400 3500 4800 6400 8000

lower 60 x 40 70 x 50 80 x 60 80 x 80 100 x 80

2 100. 68.6 100. 100. 100.

100. 75.5 100. 00. 99.95

100. 83.5 100. 99.94 100.

l . 100. 93.2 00. 99.95 99.93

100. 99.0 100. 99.84

10o 99.5 99.7

m Not solved in 30 virutal seconds.

Ii
'1

I

.4J

22

Finally, it would appear that potential improvements in the proce-

dure would most likely be in two areas. First, the linear space packing

(knapsack) dynamic program is performed countless times in an individual

problem solution. Significant reductions in computation for that proce-

dure would certainly reduce computation times. The present D.P. code used

has been programmed to take advantage of the characteristics of the par-

ticular data set used. This is particularly effective because of the fact

that most packings that are performed in the course of solving a problem

are relatively small. It would appear initially that a good fast heuristic

might speed things up considerably. However, this clearly would come at

a cost in the quality of the solutions obtained. Preliminary analysis in-

dicates that the computational effort for a heuristic which would insure

high quality solutions might be on the same order as the present procedure.

What is necessary to resolve that conflict is to test a series of in-

creasingly complex heuristics in order to find the trade-off between compu-

tation time and solution quality. That is beyond the scope of this paper.

Second, the bounding function used presently has achieve conside-

rable reductions in computational effort (experimental runs with and with-

out the bounding function resulted in reductions on the order of up to 30-1).

Further improvements in the bounds uuld hare strong potential for improving

running times.

ACKNOWLEDGEMENTS

This research was supported, in part, by the U.S. Air Force, under

contract number F73AFL-00360001, by the office of Naval Research, under

contract number N00014-76-C-0096, and by the Onderzoeksfonds, Katholieke

Universiteit Leuven, under grant OT/IX/I. I am indebted to an anonymous

referee who made many suggestions and observations on the first version

of this paper. This paper owes much to him/her.

23

REFERENCES

[I I ADAMOWICZ, M., and ALBANO, A., "A Solution of the Rectangular Cutting-

Stock Problem", IEEE Transaction on Systems, Man, and Cybernetics,

Vol. SMC-6, No. 4, April 1976, pp. 302-310.

[2] BAKER, B.S., COFFMAN, E.G., and RIVEST, R.L., "Orthogoaal Packings

in Two Dimensions", SIAM Journal on Computing, Vol. 9, No. 4, Nov.

1980, pp. 846-855.

[3] CHRISTOFIDES, N., and WHITLOCK, C., "An Algorithm for Two-Dimensional

Cutting Problems", Operations Research, Vol. 25, No. 1, Jan. 1977,

pp. 30-44.

[41 COFFMAN, E.G., GAREY, M.R., JOHNSON, D.S., and TARJAN, R.E., "Perfor-

mance Bounds for Level-Orientated Two-Dimensional Packing Algorithms",

SIAM Journal on Computing, Vol. 9, No. 4, Nov., 1980, pp. 808-826.

[5] DE CANI, P., "A Note on the Two-Dimensional Rectangular Cutting-Stock

Problem", Journal of Operational Research Society, Vol. 29, No. 7,

1978, pp. 703-706.

[6 1 DeSHA, E.L., "Area Efficient and Volume Efficient Algorithms for Loading

Cargo", Masters Thesis, United States Navy Post-Graduate School, Sept.

1970.

[17 C CAREY, Michael, and JOHNSON, David, Computers and Intractability,

W.H. Freeman, San Francisco, 1979.

[8 GAREY, M.R., and JOHNSON, D.S., "Approximation Algorithms for Bin Pack-

ing Problems : A Survey", Analysis and Design of Algorithms for Bin

Packing in Combinatorial Optimization, G. Ausiello and M. Lucertini,

Eds., Springer, Vienna 1981, pp. 147-172.

[9 1 GILMORE, P.C., and GOMORY, R.E., "Theory and Computation of Knapsack

Functions", Operations Research, Vol. 14, 1966, pp. 1045-1074

[10] GOLDEN, B.L., "Approaches to the Cutting Stock Problem", AIIE Trans-

actions, Vol. 8, No. 2, June 1976, pp. 265-272.

[11 HAHN, S., "On the Optimal Cutting of Defective Glass Sheets", IBM N.Y.

Scientific Center Report No. 320-2916, 1967.

S I

24

[12 1 HAIMS, M.J. and FREEMAN, H., "A Multistage Solution of the Template-

Layout Problem", IEEE Transactions on Systems Science, and Cybernetics,

Vol. SSC-6, No. 2, April 1970, pp. 145-151.

[13] HERZ, J.C., "A Recursive Computing Procedure for Two-Dimensional Stock

Cutting", IBM Journal of Research and Development, Vol. 16, 1972, pp.

462-469.

[14] HINXMAN, A.I., "The Trim-Loss and Assortment Problems : A Survey",

European Journal of Operational Research, Vol. 5, 1980, pp. 8-18.

[15 1 HODGSON, Thom J., "IPLS : Interactive Pallet Loading System", Research

Report No. 81-9, Industrial and Systems Engineering Department, Uni-

versity of Florida, Gainesville, Florida 32611, June 1981.

[16 1 ?ADSEN, Oli B.G.,"Glass Cutting in a Small Firm", Mathematical Programnm-

ing, Vol. 17, 1979, pp. 85-90.

[17 1 NEMHAUSER, George L., Introduction to Dynamic Programming, John Wiley

and Sons, Inc., New York, NY, 1966.

[18 STEUDEL, H.J., "Generating Pallet Loading Patterns : A Special Case of

the Two-Dimensional Cutting Stock Problem", Management Science, Vol. 25,

No. 10, Oct., 1979, pp. 997-1004.

I

